165 research outputs found

    An attempt at beating the 3D U-Net

    Full text link
    The U-Net is arguably the most successful segmentation architecture in the medical domain. Here we apply a 3D U-Net to the 2019 Kidney and Kidney Tumor Segmentation Challenge and attempt to improve upon it by augmenting it with residual and pre-activation residual blocks. Cross-validation results on the training cases suggest only very minor, barely measurable improvements. Due to marginally higher dice scores, the residual 3D U-Net is chosen for test set prediction. With a Composite Dice score of 91.23 on the test set, our method outperformed all 105 competing teams and won the KiTS2019 challenge by a small margin

    Look Ma, no code: fine tuning nnU-Net for the AutoPET II challenge by only adjusting its JSON plans

    Full text link
    We participate in the AutoPET II challenge by modifying nnU-Net only through its easy to understand and modify 'nnUNetPlans.json' file. By switching to a UNet with residual encoder, increasing the batch size and increasing the patch size we obtain a configuration that substantially outperforms the automatically configured nnU-Net baseline (5-fold cross-validation Dice score of 65.14 vs 33.28) at the expense of increased compute requirements for model training. Our final submission ensembles the two most promising configurations. At the time of submission our method ranks first on the preliminary test set

    MITK-ModelFit: A generic open-source framework for model fits and their exploration in medical imaging -- design, implementation and application on the example of DCE-MRI

    Full text link
    Many medical imaging techniques utilize fitting approaches for quantitative parameter estimation and analysis. Common examples are pharmacokinetic modeling in DCE MRI/CT, ADC calculations and IVIM modeling in diffusion-weighted MRI and Z-spectra analysis in chemical exchange saturation transfer MRI. Most available software tools are limited to a special purpose and do not allow for own developments and extensions. Furthermore, they are mostly designed as stand-alone solutions using external frameworks and thus cannot be easily incorporated natively in the analysis workflow. We present a framework for medical image fitting tasks that is included in MITK, following a rigorous open-source, well-integrated and operating system independent policy. Software engineering-wise, the local models, the fitting infrastructure and the results representation are abstracted and thus can be easily adapted to any model fitting task on image data, independent of image modality or model. Several ready-to-use libraries for model fitting and use-cases, including fit evaluation and visualization, were implemented. Their embedding into MITK allows for easy data loading, pre- and post-processing and thus a natural inclusion of model fitting into an overarching workflow. As an example, we present a comprehensive set of plug-ins for the analysis of DCE MRI data, which we validated on existing and novel digital phantoms, yielding competitive deviations between fit and ground truth. Providing a very flexible environment, our software mainly addresses developers of medical imaging software that includes model fitting algorithms and tools. Additionally, the framework is of high interest to users in the domain of perfusion MRI, as it offers feature-rich, freely available, validated tools to perform pharmacokinetic analysis on DCE MRI data, with both interactive and automatized batch processing workflows.Comment: 31 pages, 11 figures URL: http://mitk.org/wiki/MITK-ModelFi
    • …
    corecore